Theory Frontier Town Hall Meeting: TF11+

Irina Mocioiu Pennsylvania State University

- What physics can we learn from present/planned experiments?
- For a given model (class) or effective theory, what are the implications for different types of experiments?
- How can we learn more from current/planned experiments?
- What other experiments should we think about to answer more of the physics questions?

- What physics can we learn from present/planned experiments?
 - precision measurements of already known properties
 (e.g. neutrino mixing angles and squared mass differences) NF
 - yet unknown properties
 (e.g. absolute neutrino mass, Majorana vs. Dirac, CP violation in
 the lepton sector, neutrino mass ordering, electromagnetic
 properties) TFX, NF, CF, RF, EF
 - B ν SM
 - New interactions
 - New states
 - Connections to other sectors TFX, NF, CF, RF, EF
 - •

- For a given model (class) or effective theory, what are the implications for different types of experiments?
 - different types of neutrino experiments
 - implications for cosmology
 - implications in astrophysics

(see Louis Strigari's presentation)

- connections to collider experiments
- connections with charged lepton measurements

- How can we learn more from current/planned experiments?
 - Identify new observables and new ways of looking at data (e.g. background for one analysis becomes signal for another)
 - Global analysis of all types of available data

 - New analysis framework (NSI+, leptonic unitarity tests,...)

- How can we learn more from current/planned experiments?
 - Identify new observables and new ways of looking at data (e.g. background for one analysis becomes signal for another)
 - Global analysis of all types of available data

 - New analysis framework (NSI+, leptonic unitarity tests,...)

One Example: NSI

- Model Building: explicit theoretical models that generate large NSI and are consistent with all other constraints
- Effective theory: general parameterization with parameters to be constrained by data
- Data across many frontiers
 - matter effects in neutrino oscillations (vector-like NSI)
 - scattering experiments: many NSI structures. (different processes, high precision, high energy,...) e.g. $CE\nu NS$, IceCube astro ν , supernovae,...
 - collider experiments (e.g. monojet searches)
 - lepton or quark flavor experiments, rare processes, ...
- Need consistent picture through complementary approaches
- Relevant to lots of frontiers/topical groups

Common goal: more/better physics understanding

- Snowmass organization = starting point
- Collaboration and coordination = necessity
 - do not miss anything important
 - do not duplicate effort
 - get coherent understanding and message
- Need participation across
 - Theory
 - Experiments
 - All Frontiers